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ABSTRACT 

The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was to  be performed 
by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible 
for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an 
Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational 
lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, 
capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper 
is limited to the Proximity Operations phase of HRSDM. I t  introduces a relative motion strategy 
useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe 
circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required 
for extended periods of time. 

Parameters and algorithms used to model the relative motion of HRV with respect to HST during the 
Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, 
convenient parameters for describing SE motion, and a concept for initializing SE motion around a 
target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects 
of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and 
navigation uncertainty on long term SE motion are discussed. 

INTRODUCTION 

The Proximity Operations (ProxOps) phase of an AR&D mission to a non-cooperative target* such 
as a non-functional HST is likely to include a period of target surveillance, where the chase vehicle points 
its cameras, and relative navigation sensors at the target vehicle for an extended amount of time in order 
to characterize the target's configuration, and allow relative orbit and attitude estimation processes to 
converge. Whereas manned rendezvous and docking missions and AR&D missions to cooperative targets 
can perform these tasks rather quickly (time frames on the order of tens of minutes), missions such as 
the HRSDM could require significantly more time, and more complicated relative motion to fully plan 
the AR&D sequence. 

In the HRSDM ProxOps phase, the HRV must achieve a relative trajectory with respect to a poten- 
tially non-functional HST that allows it to characterize the telescope's configuration, including position- 
ing of the solar arrays, high gain antennas, and aperture door. Additionally, the HRV sensor suite must 
be pointed at  the telescope for an uncertain amount of time to allow relative attitude and translation 
estimation processes to converge. The relative motion trajectory must: 1) allow for operations on the 
order of hours or days; 2) provide multiple view angles to improve the inspection capability; 3) provide 

'Non-cooperative refers to  a target that was not designed to be autonomously docked with, or is incapable of providing 
critical data  to the chase vehicle. HST can be considered non-cooperative because it does not provide relative orbit and 
attitude estimation information; also, a non-functional HST could potentially be tumbling, and therefor not in a cooperative 
orient at ion. 
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safe, passive collision avoidance; and 4) satisfy the requirements of the vehicle’s thermal, power, and 
communications subsystems. 

To satisfy these relative motion requirements, the HRSDM flight dynamics team has expanded on a 
relative motion concept briefly suggested by Wigbert Fehse in [3]. The relative motion trajectory follows 
an elliptical path around the target vehicle, with out-of-plane motion timed such that the relative motion 
trajectory never crosses the velocity vector of the target vehicle. In this relative trajectory, drift of the 
two spacecraft (for example due to relative state estimation error) will not result in re-contact, and the 
trajectory can be considered passively safe. Using Fehse’s terminology, we refer to this safe relative 
motion as a “safety ellipse”. 

In this paper we develop an approximation of spacecraft relative motion to  assist in the design of a 
relative trajectory that suits the needs of HRV in the Proximity Operations phase to rendezvous with, 
inspect, and ultimately capture HST while maintaining a safe, collision-free trajectory and optimizing 
lighting conditions for solar power collection and relative navigation. 

SYMBOLS 
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reference orbit semi-major axis 
angle between the mean inertial relative position direction and the radial direction 
orbit-plane solar-incidence angle 
out-of-plane phase of relative motion 
in-plane phase of relative motion 
Earth gravitation constant 
mean motion 
angular position in the in-plane two-by-one ellipse 
difference between in-plane and out-of-plane phase of relative motion 
spacecraft to spacecraft relative position vector 
mean inertial relative position vector 
inertial Sun direction 
Hill’s frame components of the vector p 
magnitude of radial periodic motion 
mean offset of periodic relative motion in the velocity direction 
magnitude of out-of-plane periodic motion 
angular deviation of relative motion from the mean inertial direction 
in-plane component of C 
out-of-plane component of 5 

COORDINATE FRAMES 

The standard Earth-centered inertial frame is designated as 3i and has unit vectors 41, 42 and & with 
21 in the direction of vernal equinox, 2, in the direction of the Earth spin axis, and 42 = i 3  x 41. Frame 
.Ei has its origin at the center of Earth. 

The LVLH frame, Fa, has unit vectors al, and a 3  with a 3  in the nadir direction, a 2  in the direction 
of the negative orbit normal. and A1 = a 2  x a-3. which is the velocitv direction for a circular orbit. Frame 
Fa has its origin at the reference spacecraft to which it is associated. 

The orbital frame, Fo, is a permutation of the LVLH frame, and has unit vectors 61 in the radial 
direction, 6 2  in the co-velocity direction and 0 3  in the orbit normal direction. Frame 30 has its origin 
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at the reference spacecraft to which it is associated. The orbital frame is also commonly referred to as 
Hill’s frame, or the RIC (radial, in-track, cross-track) frame. 

The HRV body frame, 3 H ,  has unit vectors HI, H 2  and H 3  with HI in the relative navigation 
sensor boresight direction, and parallel to the HST boresight direction when mated, H 3  normal to the 
DM solar panels, and normal to the HST solar panels when mated, and H 2  = H 3  x HI. 

RELATIVE ORBITAL DYNAMICS REVIEW 

The relative motion of a spacecraft with respect to a reference spacecraft in a circular or nearly 
circular orbit can be approximated using linearized equations of motion. These linear equations of 
motion, known as the Hill-Clohessy-Wiltshire equations,’ are commonly expressed in a coordinate frame 
centered at  the reference spacecraft, and rotating with the orbital rate. This frame, often referred to as 
Hill’s frame, is identical to frame Fo, with unit vectors o1 in the radial direction, 62 in the co-velocity 
direction and 6 3  in the orbit normal direction. The variables x, y ,  and z are often used to describe the 
magnitudes of the relative position vector, p in Hill’s frame as given in Eq. (1). 

p = xi31 + yo2 + 263  (1) 

The linearized Hill’s equations given in Eqs. (2-4) approximate the relative motion of two spacecraft 
in an unperturbed point-mass gravitational field. 

x-2ny-3n2x = o 
y+2ni = 0 
i + n 2 z  = 0 

The mean motion, n, of the reference spacecraft is given in terms of the central body gravitation 
parameter, p, and the reference spacecraft semi-major axis, a,  by the equation: 

n = m  ( 5 )  

x ( t )  = (io/n) sinnt - (3x0 + 2y0/n) cosnt + 4x0 + 2?jo/n (6) 

- ( 6 ~ ~ x 0  + 3yo)t - 2&/n + yo (7) 
z ( t )  = (.&/n) sin nt + zo cos nt (8) 

The linearized equations of motion can be solved analytically. The solution is: 

y ( t )  = (2i0/n) cos nt + (6x0 + 4j/o/n) sin nt 

This solution is often used to assist in the design of spacecraft relative motion trajectories. For example, 
to build a relative motion that does not include secular growth of the spacecraft relative range, we 
remove the secular term in Eq. (7) by enforcing the following constraint on the radial position and 
in-track velocity: 

As described in [a], this constraint results in an orbit displaced from the reference orbit, but with the 
same energy, or semi-major axis, and thus the same orbital period (neglecting higher order terms in 
eccentricity, and the effect of Earth oblateness). Rewriting Hill’s equation with this period matching 
constraint, the relative equations of motion become: 

yo = -2zon (9) 

z( t )  = (io/n) sin nt + xo cos nt 
y(t) 
z ( t )  = (io/n) sin nt + zo cos nt 

= (2io/n) cosnt - 2x0 sinnt - 23.0/n + yo 
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These equations describe a relative motion in which the in-plane and out-of-plane motions are decoupled. 
Furthermore, the in-plane motion can be classified into three categories: 1) constant offset in the velocity 
direction; 2) elliptical motion in the radial, in-track plane, with period equal to the orbital period, and 
with major axis in the velocity direction twice the magnitude of the minor axis in the radial direction; 
3) combinations of 1) and 2). The out-of-plane motion is a simple harmonic oscillator with period equal 
to the orbital period. Using these well known equations describing spacecraft relative motion, we now 
introduce the safety ellipse concept, and a new parameterization and equations of relative motion for 
two vehicles in close-proximity, near-circular orbits. 

SAFETY ELLIPSE DEFINITION 

To further improve our understanding of relative motion, we introduce six new independent variables 
to describe the relative motion: the minor axis of the in-plane ellipse, or the maximum radial offset, 
x,,,; the magnitude of the out-of-plane motion, zmaZ; the instantaneous mean offset of relative motion 
in the velocity direction, yc; the drift rate of the mean offset in the velocity direction, Ij,; the phase angle 
of the radial motion, y (with zero phase defined as the point where the radial offset is maximized and 
radial velocity is zero), the phase angle of the out-of-plane motion, x, (with zero phase defined as the 
point where the out-of-plane offset is maximized and out-of-plane velocity is zero). These independent 
variables are shown in Figs. 1 and 2. Note that y and x both have rates given by the mean motion, 

0 1  - reference spacecraft 

0 - peer spacecraft 

Figure 1 In-plane relative spacecraft motion in Hill’s frame 

- i /n  -x/n 

-b z 

Figure 2 Variables describing relative in-plane and out-of-plane phase 
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and can be written as functions of time, as follows: 

y(t) = nt -nt,,o 

~ ( t )  = nt -nt,,o 
(13) 
(14) 

where t,=o is the time of max radial offset, and t,=o is the time of max out-of-plane offest. It is 
convenient to define a new variable, ?I, the difference between the initial in-plane and out-of-plane phase 
angles as follows: 

Assuming the period matching constraint has been met, y and x can also be written as 
?I=x-r  (15) 

-x/n y = arctan (T) 
x = arctan (T) - i /n  

If period matching is not met, the secular drift can be described in terms of yc, which is defined in 
Eq. (18) to  include the difference between the initial velocity and the velocity required by the period 
matching constraint in Eq. (9), 

Assuming t o  = t y = O ,  the in-plane initial conditions include contributions from periodic motion, and 
secular motion from the initial value of Ijc, which can be written as: 

(18) y =  - Ij + 2xmaXn COS 7 

To define the function f(&) in Eq. (19), assume relative motion with secular drift only, such as in a 
relative motion with semi-major axis difference only. Rewriting Eq. (11) with the appropriate initial 
conditions (xmaX = 0, 0 = Yc, 5 = 0), the y(t) equation becomes: 

y(t) = (6x0 + 4yc/n) sin(nt) - (6~1x0 + 3&)t (21) 

Requiring the periodic component of this equation to equal zero results in the following definition: 

2 Y C  f (Yc)  = -3n 
Rewriting Eqs. (10-12) with the initial conditions 

2 Y C  
3n 2 0  = Xmax - - 

we get an expression for the relative motion in terms of the six new independent parameters: 

2 Y C  
Xmax cosy - - 

3n 47)  = 
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We can also write the time derivatives of the relative position states as follows: 

The reverse operations to compute the 
straightforward, and are given as follows: 

x =  
- 

Xmax - 

- 
Zmax - 

Yc = 

Yc = 

- - -xmaxn sin y 
= -2xma,n cos y + yc 

- - -zrnaxnsin(y + Ict) 

new parameters from relative position and velocity is fairly 

arctan ( T) -x/n 

It will be convenient later to define another variable, 4, as the angular position in the two-by-one in- 
plane ellipse, measured counter-clockwise (in the direction of relative motion) from the radial direction 
to the current in-plane position of the reference spacecraft. Note that 4 and y are only equal when 
x = 0, or x = xmax, where their values are 0, n/2, pi, etc. The in-plane angular position, 4, can be 
written as a function of time for the period-matched motion using Eqs. (10) and (11) as follows: 

$(t) = arctan(-y(t)/z(t)) 

4(t)  = arctan 1 -(2ko/ncos(nt) - 2x0 sin(nt) - 2ko/n) 
fo/n sin(nt) + xo cos(nt) 

Defining initial conditions as in Eqs. (24-27), 4(t)  can be written as 

2 sin(nt) 
cos(nt) 

4(t> = arctan [ ] (43) 

The magnitude and phase of the out-of-plane motion are independent of the in-plane variables. Vary- 
ing the difference between the initial in-plane and out-of-plane angles (henceforth, the phase difference, 
or $), the relative motion changes as shown in Fig. 3. This figure illustrates how the phase difference 
is what truly impacts the orientation of the plane of relative motion, and is a more appropriate choice 
for describing the relative motion than either y or x. In fact, y and x vary continuously over the orbit, 
making them difficult parameters to use in relative motion design. As shown in the figure, at  zero degrees 
phase difference, the relative motion is restricted to planes defined by rotating the 01-02  plane about 
the co-velocity 0 2  direction. Some examples of relative motion with zero degrees phase difference are 
the Sabol-Burns-McLaughlin (SBM)-Circular formation, in which the relative motion follows a circular 
trajectory, and the SBM-Projected-Circular formation, which projects a circle in the 0 2 - 0 3  plane.2 

At 90 degrees phase difference, the relative motion is restricted to planes defined by rotating the 01-02 
plane about the radial (01) direction. One example of relative motion with 90 degrees phase difference 
is another projected-circular formation, which projects a circle into the radial-cross track (01-03) plane. 
Xelztive meticr, trajecteries with 90 degrees phase differefice have a particularly useful quality, which 
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Figure 3 Relative motion trajectories with varying phase difference between in-plane and 
out-of-plane motion, with yc = 0, x,,, = 50m, z,,, = 50m. The circular motion in the top 
right plot corresponds to ?I, = go", the requirement for safety ellipse motion. 
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is that the relative motion trajectory never crosses the velocity direction of the reference spacecraft. 
In this trajectory, if the in-plane and out-of-plane separation magnitude is large enough, relative drift 
of the two spacecraft (for example due to relative state estimation error) will not result in re-contact. 
The peer spacecraft trajectory will remain on the surface of a circular cylinder, with axis parallel to the 
reference spacecraft velocity direction, as illustrated in Fig. 4. This relative motion concept is briefly 
suggested by Wigbert Fehse in [3]. Using Fehse’s terminology for the motion, we refer to any relative 
motion with 90 degrees phase difference as a “safety ellipse”. Safety ellipse motion of two spacecraft 
that do not satisfy the period matching constraint in Eq. (9) will henceforth be referred to as a “walking 
safety ellipse”. Note that a walking safety ellipse requires a sixth independent variable to fully describe 
the relative motion. A convenient choice for this variable is the rate of change of the mean offset in 
the velocity direction, or Ij,. Another convenient choice would be the mean radial offset of the elliptical 
motion. 

\ 

-40 -20 0 20 40 
cross-track 

Figure 4 Relative motion in the walking safety ellipse, with drift rate yc = 50 meters per 
orbit 

POWER AND LIGHTING CONSIDERATIONS 

The desired HRV attitude during most of the ProxOps phase is most strictly constrained by HRV 
HI-axis (the relative navigation sensor axis) pointing at HST to  enable relative navigation. The other 
primary constraint on the HRV attitude is solar power collection, which would optimally point either 
the HRV H3-axis (DM solar panel axis) or the HRV negative HI-axis (EM solar panel axis) directly 
towards the sun. The relative navigation pointing and sun pointing constraints cannot be satisfied 
simultaneously, as there is no situation in which vectors from HRV to HST and from HRV to Sun remain 
perpendicular (for H3-axis sun point) or antiparallel (for minus HI-axis sun point) throughout the orbit. 
The sun-pointing mode carries an inertial pointing constraint, while the HST-pointing mode carries an 
attitude tracking constraint. Assuming HI-ax i s  HST-pointing is the primary constraint, the best we can 
do is to maintain HI-axis pointing at HST, and maximize the solar power generation by careful selection 
of relative motion initial conditions. In this section we introduce an algorithm for initializing the safety 
ellipse motion which enables HI-axis HST-pointing, while maximizing solar power collection on either 
the DM or EM solar panels. 
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Safety Ellipse Relative Motion in Iner t ia l  Coordinates 

Inspection of the relative motion of two spacecraft in a safety ellipse configuration yields a useful 
observation: assuming safety ellipse parameters yc = 0, z,,, = 50 meters, and z,,, = 50 meters, the 
inertial direction from one spacecraft to the other varies by no more than about 30 degrees from some 
mean inertial direction. Furthermore, this mean inertial direction lies in the plane of the orbit, and can 
be steered within the plane of the orbit by careful selection of the initial safety ellipse in-plane phasing, 
7 0 .  

The concept of a mean inertial direction from a spacecraft positioned in a safety ellipse to another, 
henceforth referred to as the vector pi, is illustrated in Figures 5 and 6. Figure 5 shows the relative motion 
of two spacecraft in an inertial frame centered at one of the spacecraftt. In the figure, the reference 
spacecraft has zero inclination, so that motion in the &-axis corresponds to out-of-plane motion. Note 
that the relative motion traces out a skewed figure-eight path which is entirely within a 30-degree-half- 
angle cone. The cone axis of symmetry is aligned with the center of the figure-eight path at  the point 
where the trajectory crosses over itself. This axis of symmetry is also the vector describing the mean 
relative position vector, pi. 

m .- 
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Figure 5 Safety ellipse relative motion in  inertial coordinates. Reference spacecraft has 
zero inclination, so qs-axis corresponds to out-of-plane motion in  this figure. Safety el- 
lipse parameters are: offset, yc = 0; in-plane magnitude, zma, = 50 meters;  out-of-plane 
magnitude, zma, = 50 meters. 

Figure 6 shows the inertial relative position of 5 spacecraft positioned in a safety ellipse, with respect 
to a reference spacecraft. The initial in-plane phase angles, "yo, of the five spacecraft are incremented to  
fill the 360 degree space. The figure illustrates how ,Et varies as a function of 7 0 .  Wote that the mean 
relative position vector is always parallel to the orbital plane, and the instantaneous relative position 
never deviates from the mean direction by more than 30 degrees for a safety ellipse with parameters 
described above. 

tIt matters not which spacecraft is in the center (the reference spacecraft) in Figure 5, as the inertial relative position 
of cne with respect to the other icv~!ves cn!y 2 sign change. 
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Figure 6 Safety ellipse mean inertial direction for varying initial in-plane phase, 70. Refer- 
ence spacecraft has HST orbital parameters. Safety ellipse parameters are: offset, yc = 0; 
max radial magnitude, x,,, = 50 meters; out-of-plane magnitude, z,,, = 50 meters. 
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By carefully selecting yo at the initialization of safety ellipse motion, we can steer the mean inertial 
direction to any orientation in the plane of the orbit. This is particularly useful in our quest to optimize 
solar incidence angles while enforcing strict pointing of a relative navigation suite at  a target spacecraft. 
We previously described the attitude constraints on HRV as a strict pointing of HI-axis at  HST, and a 
less strict but extremely important sun pointing requirement, defined by either H3-axis sun pointing, or 
minus HI-axis sun pointing. We can coarsely optimize the safety ellipse motion for solar power collection 
on the DM H 3  panel by forcing the mean inertial direction from HRV to HST, Pi, to be oriented as close 
to perpendicular to the inertial sun direction, S i  as possible. This concept is illustrated in Figure 7. 
Likewise, we can coarsely optimize solar collection on the EM HI panel by forcing pi to be antiparallel 
to the HST-sun direction. 

HRV Centered Inertial Coordinates 

1 -  

0.5 ~ 

.- 0 0 -  

-0.5 - 

orbit plane - _ .  
0 sun 
* HST - 

mean HST - ----_ 

Figure 7 Safety ellipse motion with initial in-plane phase, yo, coarsely optimized for solar 
power collection by forcing the mean relative direction to HST to be perpendicular to the 
sun vector. 

The problem of coarsely optimizing the safety ellipse motion of HRV about HST can be expressed 
as follows: given HST initial conditions at  time t l ,  find the initial in-plane phase 0 < y1 < 27r and the 
initial phase difference between in-plane and out-of-plane motion, $1 = n/2 or 3x12, such that the mean 
inertial direction from HRV to HST, &, is either: a) perpendicular to the sun vector, for DM solar array 
pointing; or b) antiparallel to the sun vector, for EM solar array pointing. 

To optimize the placement of &, we also need to define an angle which describes the orientation of 
the mean inertial direction as a function of time. We will call this angle a, and define it as the angle 
between the reference spacecraft radial direction, 01, and the desired mean inertial direction expressed in 
the orbital frame Po, with CY = 0 at the same point where 7 = 0, and measured positive in the clockwise 
direction; a can be written as a function of Po,  as follows: 

a = arctan (z) -Po2 
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Since p is an inertially k e d  vector$ parallel to the orbit plane, and since the reference HST orbit is 
nearly circular, the time derivative of a is approximately equal to the orbital rate or mean motion, n. 

Eq. (44) gives us the initial value of y required to align the mean inertial vector from HRV to HST 
in whatever direction (within the orbit plane) is required to maximize solar power collection. Note that 
because y # 4, the direction from HRV to HST will not be optimally aligned throughout the orbit. 
Combining Eqs. (13) and (43), we can determine the in-plane deviation from the mean direction to be 
<11p as given in Eq. (45). Note that the maximum in-plane deviation is approximately 19.41". 

< ~ p  = 4 - y = arctan - - y (2:;) (45) 

The maximum out-of-plane deviation of the motion from the mean direction is a function of the safety 
ellipse parameters, and, given equal radial and out-of-plane maximum offsets, is approximately 26.56". 

The total angular deviation from the mean direction for safety ellipse motion is a combination of in-plane 
and out-of-plane deviations, and is typically less than about 30". 

Figure 8 Angular deviation of HST motion from the mean direction, z,,, = z,,, = 75m 

For the DM solar panel optimization, we choose y such that the mean direction from HRV to HST 
is perpendicular t o  the sun line. This initial condition, along with clocking of HRV about the relative 
navigation boresight axis, allows us to point the solar panels within a 30 degree cone of the sun line 
(projected into the orbital plane) at all times for optimal sun angles. For the EM solar panel optimization, 
we choose *j  such that the mean incrtial direction is anti-parallel to the sun line. The E3d solar panel 
optimization case is slightly less robust, as clocking about the navigation boresight axis cannot improve 
the solar incidence angle on the EM panels. Both cases are sensitive to sun-orbit plane angle (p  angle) 
variations. 

$This is true in the short term, but relative orbital perturbations such as differential higher order gravitational effects 
will Caiise the iiiean ineitial direction to waiider. F G r  iiwa we wil! 2.5ssmIe ,5 iz b&k!!y fixed. 
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Sun-Orbit Plane Angle (p  angle) Considerations 

The HRV sun pointing requirement during the ProxOps phase is most likely to be a minus HI sun 
point mode. For this mode, the safety ellipse initial phase parameters will be set such that the mean 
inertial direction from HRV to  HST is anti-parallel to the vector from HRV to Sun, projected into the 
orbital plane. For low values of the orbit plane solar incidence angle, commonly referred to as the ,D 
angle, the solar panel sun incidence angle will be similar to trends shown in Fig. 8. As p increases, the 
entire curve in Fig. 8 shifts upward by the amount ,B, making epochs with high p angles unfavorable 
for pointing at the target vehicle for long durations from the safety ellipse. 

Perturbation Considerations 

Differential perturbations on the HST and HRV orbits will cause significant changes in the safety 
ellipse motion. In particular, differential gravity effects, primarily from Earth oblateness (the J2 effect) 
will cause differential drift in both the in-plane and out-of-plane directions. This differential gravita- 
tional force, along with effects from differential atmospheric drag, and navigation uncertainty, drive the 
requirement for safety ellipse maintenance maneuvers, either in the form of re-centering maneuvers (to 
counteract the in-plane drift, controlling yc and ? j c ) ,  or re-initialization maneuvers (to counteract both 
the in-plane drift, and the out-of-plane drift, controlling all of the safety ellipse parameters). 

CONCLUSIONS 

A safe relative motion trajectory ideal for extended proximity operations of two vehicles in nearly 
circular orbits has been developed. While the relative motion trajectory is not new, the parameterization 
and mathematical description of the motion is new, and useful for further optimization of the motion 
to account for relative navigation and power generation requirements of an AR&D or formation flying 
mission. Further discussion of the effects of perturbations, and navigation uncertainty, and the frequency 
and scale of maintenance maneuvers are left for a future work. 
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